回答数
2
浏览数
7891
如何放弃
2020下初中数学教师资格证面试试题及答案【1月10日上午】
【来源于网络】
初中数学《三角形全等的判定——AAS》
一、考题回顾
二、考题解析
【教学过程】
(一)导入新课
回顾已经学过的三角形全等判定定理及其简称(三边分别相等、两边及其夹角分别相等、两角及其夹边分别相等)与不能判定三角形全等的条件组合(两边及其中一边对角分别相等)。引题:两角和其中一角的对边分别相等能否判定两个三角形全等?板书课题《三角形全等的判定》
(四)小结作业
小结:学生自主总结本节课的收获。
作业:思考——三个角分别相等能否判定三角形全等?直角三角形有没有特殊的全等判定条件?下节课继续学习。
【板书设计】
【答辩题目解析】
1.三角形全等的判定方法都有哪些?
【参考答案】
三角形全等的判定方法共有五种,分别如下:
边边边(SSS)——三边分别相等的两个三角形全等;
边角边(SAS)——两边及其夹角分别相等的两个三角形全等;
角边角(ASA)——两角及其夹边分别相等的两个三角形全等;
以上三种判定属于初中数学九个基本事实。
利用“角边角”和三角形的内角和可以推出第四种判定,
角角边(AAS)——两角及其中一角对边分别相等的两个三角形全等;
第五种方法仅适用于两个直角三角形全等的判定,
斜边、直角边(HL)——斜边和一条直角边分别相等的两个直角三角形全等。
2.你是如何设计探究AAS判定定理的?
【参考答案】
AAS判定定理的探究分为猜想和证明两个环节。猜想环节,我设置一个学生活动:给定两角大小及一角对边的长度,让学生动手画符合条件的三角形。首先独立完成,然后四人一组,通过裁剪、重叠,学生发现组内的四个三角形全等;接着我任选几个小组,通过重叠的方式向学生展示大家做出的三角形都全等。经过亲身经历,学生能够得到AAS可以判定三角形全等的猜想。接下来才进行严谨的数学证明,引导学生利用已学过的ASA来证明AAS,渗透转化思想,锻炼知识的迁移能力。
我之所以在题本的基础之上补充动手操作的猜想环节,是因为考虑到学生的认知规律。先通过动手操作感性地认识AAS也许可以判定三角形全等,有了经验支撑,再通过数学证明理性地认知AAS判定定理。这是一个比较完整的探究过程或认知流程。
心会碎我会累
2020下高中数学教师资格证面试试题及答案【1月10日下午】
【来源于网络】
高中数学《直线与平面平行(2)》
一、考题回顾
二、考题解析
【教学过程】
(一)导入新课
回顾直线与平面平行的判定定理。请学生思考,若已知直线与平面平行,能得到什么结论。
引出课题。
(二)讲解新知
出示如下图形,请学生观察并思考:如果一条直线与一个平面平行,那么这条直线与这个平面内的直线有哪些位置关系?学生通过观察能够看出,这条直线与这个平面内的任意一条直线都没有公共点,所以它们只能平行或异面。
(三)课堂练习
求证:如果三个平面两两相交于三条直线,并且其中两条直线平行,那么第三条直线也和它们平行。
请学生写成“已知”、“求证”的形式,并画出图形进行证明。
(四)小结作业
小结:回顾直线与平面平行的性质定理。
作业:思考——如果三个平面两两相交于三条直线,并且其中两条直线相交,那么第三条直线和这两条直线有怎样的位置关系?
【板书设计】
2.本节课是如何进行导入的?
【参考答案】
本节课我采用复习导入的方式。在学习本节课之前,学生已经学习了如何判断一条直线与一个平面平行,通过复习的方式,即巩固了之前所学,也使得教材中“若已知直线与平面平行,则能得到什么结论”这一问题的提出显得更为合理。因此我采用了这样的导入方式。
优质教师资格问答知识库