回答数
8
浏览数
13491
时光深知我碍你
从哪些方面判断:
教学体系
行业真正大数据,82%主讲都是hadoop、spark生态体系、storm实时开发等。
师资力量、硬件设施
靠谱的培训机构讲师来自于大型互联网企业的大数据开发人员,有着非常强的实战能力。甚至有些讲师在职期间担任项目经理、技术总监的职位。
课程设置
好的课程安排能够让学员有系统的学习,能够让小白也能够更快的入门,当然,课程还应该与市场需求相互对接,这样才能够让学员实现更好的成长。
实训项目
实训项目一般包括JAVA项目,大数据项目,企业大数据平台等,不同的学习阶段配合不同的项目,加深学员对所学知识的理解和应用。
招生门槛
企业在招聘大数据开发人员时是有一定门槛,最低学历要求是统招大专(个别小众企业有可能会放宽要求)。
班型选择
大数据技术庞多复杂,短期内想掌握几乎不可能,一般0基础的学习周期是5个月左右,且是全日制的学习。
该忘得忘不了
想要都进入大数据行业的第一步,是先搞清楚大数据究竟有哪些就业方向。大数据就业岗位随着大数据技术在企业界如火如荼的实践,企业对组建大数据团队的迫切程度也也来越高,对与大数据相关高端人才的需求也越来越紧迫,但企业对大数据团队的组建和角色分配方面缺一直有不小的困惑,到底大数据团队里应该拥有哪些几类角色,如何设置岗位?同一类别的角色的专业方向又有哪些分化,不同专业的岗位对技能应该有哪些要求?如何管理大数据团队成员的职业发展路径?为此,ChinaHadoop花费了一年时间调研了先进企业内部设立的大数据部门或团队的组织结构和职能划分,在此基础上,首次提出了企业大数据团队的岗位划分,专业分类及定义,以及每个岗位所需的技能及培训,技能考核对应的能力级别,我们将之统称为”企业大数据人才岗位技能认证体系“。通过对企业大数据人才岗位进行专业细分,岗位技能认证等级与企业现有技术专业通道形成对应关系,打通员工的职业发展通道,帮助企业逐步完善大数据团队的组织结构,不断提高团队技能,为各岗位及时储备人才。大数据团队的角色分类企业大数据团队的角色分类主要有三个大类别:大数据开发工程师、大数据运维工程师、大数据架构师。总体而言,我们大数据人才划分为三个大类:一、 大数据开发工程师:围绕大数据系平台系统级的研发人员, 熟练Hadoop、Spark、Storm等主流大数据平台的核心框架。深入掌握如何编写MapReduce的作业及作业流的管理完成对数据的计算,并能够使用Hadoop提供的通用算法,熟练掌握Hadoop整个生态系统的组件如: Yarn,HBase、Hive、Pig等重要组件,能够实现对平台监控、辅助运维系统的开发。通过学习一系列面向开发者的Hadoop、Spark等大数据平台开发技术,掌握设计开发大数据系统或平台的工具和技能,能够从事分布式计算框架如Hadoop、Spark群集环境的部署、开发和管理工作,如性能改进、功能扩展、故障分析等。二、 大数据运维工程师:了解Hadoop、Spark、Storm等主流大数据平台的核心框架,熟悉Hadoop的核心组件:HDFS、MapReduce、Yarn;具备大数据集群环境的资源配置,如网络要求、硬件配置、系统搭建。熟悉各种大数据平台的部署方式,集群搭建,故障诊断、日常维护、性能优化,同时负责平台上的数据采集、数据清洗、数据存储,数据维护及优化。熟练使用Flume、Sqoop等工具将外部数据加载进入大数据平台,通过管理工具分配集群资源实现多用户协同使用集群资源。三、 大数据架构师:这一角色的要求是综合型的,对各种开源和商用的大数据系统平台和产品的特点非常熟悉,能基于Hadoop、Spark、 NoSQL、 Storm流式计算、分布式存储等主流大数据技术进行平台架构设计,负责企业选用软件产品的技术选型,具体项目中的数据库设计及实现工作,协助开发人员完成数据库部分的程序 ,能解决公司软件产品或者项目开发和运维中与数据库相关的问题; 及时解决项目开发或产品研发中的技术难题,对设计系统的最终性能和稳定性负责。岗位能力级别定义:1. 初级:具备基本的大数据技术的基础知识,可以将其视为大数据认证的初学或者入门等级。2. 高级:大数据认证的高级或者熟练等级,表明该人才具备大数据某一专业方向的基本知识和熟练技能。3. 专家:具有业界公认的专业大数据技术知识和丰富工作经验。这里简单介绍几种我认为用的比较多的技术一、Hadoop可以说,hadoop几乎已经是大数据代名词。无论是是否赞成,hadoop已经是大部分企业的大数据标准。得益于Hadoop生态圈,从现在来看,还没有什么技术能够动摇hadoop的地位。这一块可以按照一下内容来学习:1、Hadoop产生背景 2、Hadoop在大数据、云计算中的位置和关系 3、国内外Hadoop应用案例介绍 4、国内Hadoop的就业情况分析及课程大纲介绍 5、分布式系统概述 6、Hadoop生态圈以及各组成部分的简介二、分布式文件系统HDFSHDFS全称 Hadoop Distributed File System ,它是一个高度容错性的系统,适合部署在廉价的机器上,同时能提供高吞吐量的数据访问,非常适合大规模数据集上的应用。为了实现流式读取文件系统数据的目的,HDFS放宽了一部分POSIX约束。1、分布式文件系统HDFS简介 2、HDFS的系统组成介绍 3、HDFS的组成部分详解 4、副本存放策略及路由规则 5、NameNode Federation 6、命令行接口 7、Java接口 8、客户端与HDFS的数据流讲解 9、HDFS的可用性(HA)三、初级MapReduce这是你成为Hadoop开发人员的基础课程。MapReduce提供了以下的主要功能:1)数据划分和计算任务调度:2)数据代码互定位:3)系统优化:4)出错检测和恢复:这种编程模型主要用于大规模数据集(大于1TB)的并行运算。1、如何理解map、reduce计算模型 2、剖析伪分布式下MapReduce作业的执行过程 3、Yarn模型 4、序列化 5、MapReduce的类型与格式 6、MapReduce开发环境搭建 7、MapReduce应用开发 8、熟悉MapReduce算法原理四、高级MapReduce这一块主要是高级Hadoop开发的技能,都是MapReduce为什么我要分开写呢?因为我真的不觉得谁能直接上手就把MapReduce搞得清清楚楚。1、使用压缩分隔减少输入规模 2、利用Combiner减少中间数据 3、编写Partitioner优化负载均衡 4、如何自定义排序规则 5、如何自定义分组规则 6、MapReduce优化五、Hadoop集群与管理这里会涉及到一些比较高级的数据库管理知识,乍看之下都是操作性的内容,但是做成容易,做好非常难。1、Hadoop集群的搭建 2、Hadoop集群的监控 3、Hadoop集群的管理 4、集群下运行MapReduce程序六、ZooKeeper基础知识ZooKeeper的目标就是封装好复杂易出错的关键服务,将简单易用的接口和性能高效、功能稳定的系统提供给用户。1、ZooKeeper体现结构 2、ZooKeeper集群的安装 3、操作ZooKeeper七、HBase基础知识HBase – Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用HBase技术可在廉价PC Server上搭建起大规模结构化存储集群。与FUJITSU Cliq等商用大数据产品不同,HBase是Google Bigtable的开源实现,类似Google Bigtable利用GFS作为其文件存储系统,HBase利用Hadoop HDFS作为其文件存储系统;Google运行MapReduce来处理Bigtable中的海量数据,HBase同样利用Hadoop MapReduce来处理HBase中的海量数据;Google Bigtable利用 Chubby作为协同服务,HBase利用Zookeeper作为对应。1、HBase定义 2、HBase与RDBMS的对比 3、数据模型 4、系统架构 5、HBase上的MapReduce 6、表的设计八、HBase集群及其管理1、集群的搭建过程 2、集群的监控 3、集群的管理十、Pig基础知识Pig是进行Hadoop计算的另一种框架,是一个高级过程语言,适合于使用 Hadoop 和 MapReduce 平台来查询大型半结构化数据集。通过允许对分布式数据集进行类似 SQL 的查询,Pig 可以简化 Hadoop 的使用。1、Pig概述 2、安装Pig 3、使用Pig完成手机流量统计业务十一、Hivehive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。 其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用。1、数据仓库基础知识 2、Hive定义 3、Hive体系结构简介 4、Hive集群 5、客户端简介 6、HiveQL定义 7、HiveQL与SQL的比较 8、数据类型 9、表与表分区概念 10、表的操作与CLI客户端 11、数据导入与CLI客户端 12、查询数据与CLI客户端 13、数据的连接与CLI客户端 14、用户自定义函数(UDF)十二、SqoopSqoop(发音:skup)是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(mysql、postgresql...)间进行数据的传递,可以将一个关系型数据库(例如 : MySQL ,Oracle ,Postgres等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。1、配置Sqoop 2、使用Sqoop把数据从MySQL导入到HDFS中 3、使用Sqoop把数据从HDFS导出到MySQL中十三、StormStorm为分布式实时计算提供了一组通用原语,可被用于“流处理”之中,实时处理消息并更新数据库。这是管理队列及工作者集群的另一种方式。 Storm也可被用于“连续计算”(continuous computation),对数据流做连续查询,在计算时就将结果以流的形式输出给用户。它还可被用于“分布式RPC”,以并行的方式运行昂贵的运算。1、Storm基础知识:包括Storm的基本概念和Storm应用 场景,体系结构与基本原理,Storm和Hadoop的对比 2、Storm集群搭建:详细讲述Storm集群的安装和安装时常见问题 3、Storm组件介绍: spout、bolt、stream groupings等 4、Storm消息可靠性:消息失败的重发 5、Hadoop 和Storm的整合:Storm on YARN 6、Storm编程实战
许我淡饭粗茶
1、机构在精不在大:有一些大型培训机构开设的课程几乎覆盖了所有行业,哪个行业热就开始哪个行业的课程,所以遇到这样的机构要注意了。2、讲师的实战经历很重要:讲师一定要在企业中从事过开发工作,只有实际的工作经验才能更好的从企业角度进行教学3、教学模式:最好选择小班授课,讲师更容易照顾到每个学生4、课程安排:课程很重要,有一些机构不具备大数据培训的能力,开始了java+数据库课程就对外声称大数据以下是我们的课程安排,如果成都的朋友想学习大数据可以参考一下:大数据开发工程师课程体系——Java部分。第一阶段:静态网页基础1、学习Web标准化网页制作,必备的HTML标记和属性2、学习HTML表格、表单的设计与制作3、学习CSS、丰富HTML网页的样式4、通过CSS布局和定位的学习、让HTML页面布局更加美观5、复习所有知识、完成项目布置第二阶段:JavaSE+JavaWeb1、掌握JAVASE基础语法2、掌握JAVASE面向对象使用3、掌握JAVASEAPI常见操作类使用并灵活应用4、熟练掌握MYSQL数据库的基本操作,SQL语句5、熟练使用JDBC完成数据库的数据操作6、掌握线程,网络编程,反射基本原理以及使用7、项目实战 + 扩充知识:人事管理系统第三阶段:前端UI框架1、JAVASCRIPT2、掌握Jquery基本操作和使用3、掌握注解基本概念和使用4、掌握版本控制工具使用5、掌握easyui基本使用6、项目实战+扩充知识:项目案例实战POI基本使用和通过注解封装Excel、druid连接池数据库监听,日志Log4jSlf4j第四阶段:企业级开发框架1、熟练掌握spring、spring mvc、mybatis2、熟悉struts23、熟悉Shiro、redis等4、项目实战:内容管理系统系统、项目管理平台流程引擎activity,爬虫技术nutch,lucene,webService CXF、Tomcat集群 热备 MySQL读写分离以上Java课程共计384课时,合计48天!大数据开发工程师课程体系——大数据部分第五阶段:大数据前传大数据前篇、大数据课程体系、计划介绍、大数据环境准备&搭建第六阶段:CentOS课程体系CentOS介绍与安装部署、CentOS常用管理命令解析、CentOS常用Shell编程命令、CentOS阶段作业与实战训练第七阶段:Maven课程体系Maven初识:安装部署基础概念、Maven精讲:依赖聚合与继承、Maven私服:搭建管理与应用、Maven应用:案列分析、Maven阶段作业与实战训练第八阶段:HDFS课程体系Hdfs入门:为什么要HDFS与概念、Hdfs深入剖析:内部结构与读写原理、Hdfs深入剖析:故障读写容错与备份机制、HdfsHA高可用与Federation联邦、Hdfs访问API接口详解、HDFS实战训练、HDFS阶段作业与实战训练第九阶段:MapReduce课程体系MapReduce深入剖析:执行过程详解、MapReduce深入剖析:MR原理解析、MapReduce深入剖析:分片混洗详解、MapReduce编程基础、MapReduce编程进阶、MapReduc阶段作业与实战训练第十阶段:Yarn课程体系Yarn原理介绍:框架组件流程调度第十一阶段:Hbase课程体系Yarn原理介绍:框架组件流程调度、HBase入门:模型坐标结构访问场景、HBase深入剖析:合并分裂数据定位、Hbase访问Shell接口、Hbase访问API接口、HbaseRowkey设计、Hbase实战训练第十二阶段:MongoDB课程体系MongoDB精讲:原理概念模型场景、MongoDB精讲:安全与用户管理、MongoDB实战训练、MongoDB阶段作业与实战训练第十三阶段:Redis课程体系Redis快速入门、Redis配置解析、Redis持久化RDB与AOF、Redis操作解析、Redis分页与排序、Redis阶段作业与实战训练第十四阶段:Scala课程体系Scala入门:介绍环境搭建第1个Scala程序、Scala流程控制、异常处理、Scala数据类型、运算符、Scala函数基础、Scala常规函数、Scala集合类、Scala类、Scala对象、Scala特征、Scala模式匹配、Scala阶段作业与实战训练第十五阶段:Kafka课程体系Kafka初窥门径:主题分区读写原理分布式、Kafka生产&消费API、Kafka阶段作业与实战训练第十六阶段:Spark课程体系Spark快速入门、Spark编程模型、Spark深入剖析、Spark深入剖析、SparkSQL简介、SparkSQL程序开发光速入门、SparkSQL程序开发数据源、SparkSQL程序开DataFrame、SparkSQL程序开发DataSet、SparkSQL程序开发数据类型、SparkStreaming入门、SparkStreaming程序开发如何开始、SparkStreaming程序开发DStream的输入源、SparkStreaming程序开发Dstream的操作、SparkStreaming程序开发程序开发--性能优化、SparkStreaming程序开发容错容灾、SparkMllib 解析与实战、SparkGraphX 解析与实战第十七阶段:Hive课程提体系体系结构机制场景、HiveDDL操作、HiveDML操作、HiveDQL操作、Hive阶段作业与实战训练第十八阶段:企业级项目实战1、基于美团网的大型离线电商数据分析平台2、移动基站信号监测大数据3、大规模设备运维大数据分析挖掘平台4、基 于互联网海量数据的舆情大数据平台项目以上大数据部分共计学习656课时,合计82天!0基础大数据培训课程共计学习130天。
用你管
如果在成都的话,可以了解下邦飞科技,一家有自己研发团队的专业编程培训机构,研发的部分商业会拿给学生学习。教学团队是由一位有十五年开发经验的大牛带领的教师团队。部分老师还是CSDN的客座讲师和高校的外聘讲师。
佞
大数据培训【达内教育】好,该机构制定行业培训标准,为达内学员提供高端技术、所学课程受国际厂商认可,让达内学员更具国际化就业竞争力。判断一家培训机构好不好要从教学课程、师资力量、品牌口碑、就业情况等多方面去考量。1、师资力量。老师是一个人学习东西好坏的最大因素,好的老师,有好的教育方法和教育目标,帮助学生更简洁的了解一件复杂的学科,这对于老师素质的考察非常严格。2、课程体系。好的培训机构会针对学员情况定制课程,并且培训过程中还会给学员安排实战项目。这样在学习的时候,就已经接触了企业的专业项目,既培养了学员专业知识体系的实用性,还能够感受到大数据项目的紧张性,这在学习的时候非常宝贵。3、就业指导。这就要求培训机构具备良好的就业指导能力,才能更好地帮助学员就业和择业,获得满意的工作机会。感兴趣的话点击此处,免费学习一下想了解更多有关大数据培训机构的相关信息,推荐咨询【达内教育】。【达内教育】重磅推出“因材施教、分级培优”创新教学模式,同一课程方向,面向不同受众群体,提供就业、培优、才高三个级别教学课程,达内“因材施教、分级培优“差异化教学模式,让每一位来达内学习的学员都能找到适合自己的课程。达内IT培训机构,试听名额限时抢购。
优质工程师报名问答知识库